

Virtual 2020

EUROPEAN ASSOCIATION OF FACULTIES OF PHARMACY

INTRODUCTION

Pharmacogenetics of drug metabolism is progressing in community and primary care settings, presenting a challenge to integrate applied aspects in pharmacy curricula. Phenoconversion, where the metaboliser status predicted by genotype is altered often interactions, is through drug overlooked¹, further warrants and consideration within programmes of study.

METHOD

studies from 44 patients on Case amitriptyline, an established medicine with pharmacogenetic connotations, were selected as pedagogical resources to explain drug-gene, drug-drug, and drug-drug-gene Data included results of interactions. analytical (genetic/chemical) and clinical investigations for the patients who were recruited from Mater Dei Hospital, Malta, following ethics approval and written informed consent. An interactive exercise three case-based scenarios was on integrated in a two-hour seminar delivered to second-year pharmacy students. The teaching model included presentation of applied biochemistry basics followed by hands-on understanding of pharmacotherapeutic implications.

Acknowledgment

This research was funded by the ENDEAVOUR Scholarships Scheme, Malta.

Understanding pharmacogenetics and drug interactions through case-based examples

Luana Mifsud Buhagiar^{1,2}, Anthony Serracino Inglott^{1,2}, Godfrey LaFerla³ 1 Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta 2 Medicines Authority, Malta Life Sciences Park, San Ġwann, Malta 3 Department of Surgery, Faculty of Medicine and Surgery, University of Malta, Msida, Malta

email: luana.mifsud-buhagiar.06@um.edu.mt

Example of interactive cases presented to students

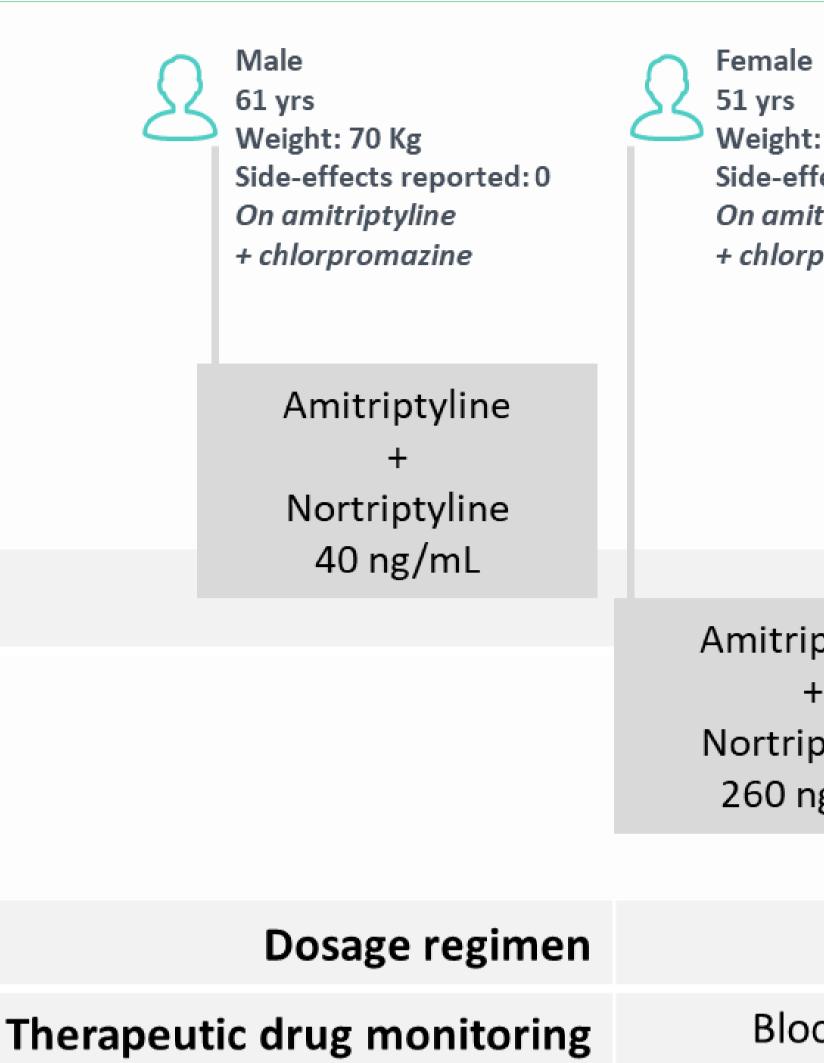
This scenario illustrates how the serum levels of amitriptyline and its active metabolite nortiptyline, as measured through an LC-MS/MS method developed in-house², vary between two individual patients with the same CYP2C19/CYP2D6 genotypes, who have been on the same daily dose of amitriptyline for over 20 years. Divergence from the expected blood levels is evident in the patient being co-administered paroxetine, a strong CYP2D6 inhibitor.

Genotype	CYP2C19 *1/*17	C
Metaboliser Status	Rapid	
Genotype-guided dosing recommendation as per Clinical Pharmacogenetics Implementation Consortium (CPIC) annotation	Consider alternative drug not metabolised If amitriptyline is warranted, utilize therap guide dose adjustment	
Amitriptyline Summary of Product Characteristics (SmPC)	No recommendation specific to metabolise Lower dose to be considered in case CYP2D6 inhibitor	

RESULTS

In the cases presented, CYP2D6 inhibition by concomitant drugs (particularly paroxetine) was linked to higher-than-expected serum concentrations of amitriptyline and its active metabolite nortriptyline in the recruited subjects, explaining almost 50% of variation (P<0.01). Through the selected case studies, students could identify the impact of genetic variants and the co-administration of CYP inhibitors, on drugmetabolising enzyme activity and individual patient outcomes. The seminar evaluation highlighted that the real-case scenarios helped students understand not only the applied aspects but also the fundamental principles of pharmacogenetics.

REFERENCES


1. Shah RR, Shah DR. Personalized medicine: is it a pharmacogenetic mirage? Br J Clin Pharmacol 2012;74(4):698-721. doi: 10.1111/j.1365-2125.2012.04328.x 2. Mifsud Buhagiar L, Sammut C, Chircop Y, Axisa K, Sammut Bartolo N, Vella Szijj J, et al. Practical LC-MS/MS method for the simultaneous quantification of amitriptyline, nortriptyline and their hydroxymetabolites in human serum. *Biomed Chromatogr* 2019;33(12):e4679. doi: 10.1002/bmc.4679

CYP2D6 *1/*4

Intermediate

ed by CYP2C19 peutic drug monitoring to

iser status e of concomitant strong

Expected levels

CONCLUSION

As the genomics era endures, it is crucial to impart a practical grasp of how clinical pharmacology, embracing real-world patients polypharmacy challenge, should complement the and pharmacogenetics in making precision medicine a working reality. Leveraging research findings from local investigations provides an opportunity for students to learn from examples having familiar therapeutic regimes and clinical settings. A case-based learning experience enables future pharmacists to comprehend the translational value, appreciating their prospective role in spearheading effective implementation for patient care.

L-Università ta' Malta Faculty of Medicine & Suraerv

Department of Pharmacy

Weight: 100 Kg Side-effects reported: 10 On amitriptyline + chlorpromazine and paroxetine

Measured Levels

Amitriptyline Nortriptyline 260 ng/mL

50mg amitriptyline daily

Blood withdrawn 15 hours post-dose

Amitriptyline + Nortriptyline 30 - 60 ng/mL